Tunisia Polytechnic School

Option: Signals and Systems (SISY)

Graduation Project Defense

Low SNR Characterization of the Capacity of Generalized fading Channels

Presented by: Abdoulaye TALL

Supervisors: Dr Zouheir REZKI, Dr Mohamed-Slim ALOUINI Vis-à-Vis: Dr. Ines BOUSNINA

June 27, 2012

Introduction

Figure : Ultra Wideband communications

Introduction

Figure : Ultra Wideband communications

Figure : Sensor Network

Introduction

Figure : Ultra Wideband communications

Figure : Sensor Network

\Rightarrow Need to characterize wireless communications systems at low SNR

Outline

Systems Models

- MIMO Channel with Rayleigh Fading
- SISO Channel with Log-normal shadowing

2 Asymptotic analysis

- Motivation
- Examples
- I Full CSI MIMO Capacity at Low SNR
 - General expression
 - Low SNR Asymptotic expression
 - On-Off scheme
- 4 Noisy CSI-T MIMO Capacity at Low SNR
- 5 Full CSI Log-normal Channel Capacity
 - General and Asymptotic Expressions
 - On-Off scheme

Systems Models

Asymptotic analysis Full CSI MIMO Capacity at Low SNR Noisy CSI-T MIMO Capacity at Low SNR Full CSI Log-normal Channel Capacity

/IMO Channel with Rayleigh Fading SISO Channel with Log-normal shadowing

Outline

Systems Models

- MIMO Channel with Rayleigh Fading
- SISO Channel with Log-normal shadowing

2 Asymptotic analysis

- In the second second
- 4 Noisy CSI-T MIMO Capacity at Low SNR
- 5 Full CSI Log-normal Channel Capacity

Systems Models

Asymptotic analysis Full CSI MIMO Capacity at Low SNR Noisy CSI-T MIMO Capacity at Low SNR Full CSI Log-normal Channel Capacity

MIMO Channel with Rayleigh Fading SISO Channel with Log-normal shadowing

MIMO Channel with Rayleigh Fading

MIMO Rayleigh Channel Model

$$y = Hx + n$$

where

- $y \in \mathbb{C}^r$: the received signal,
- $x \in \mathbb{C}^t$: the transmitted signal,
- $n \in \mathbb{C}^r$: the noise,
- $H \in \mathbb{C}^{r \times t}$: the channel gain matrix.

The elements of H are complex Gaussian with zero mean, independent real and imaginary parts, each with variance 1/2.

Systems Models

Asymptotic analysis Full CSI MIMO Capacity at Low SNR Noisy CSI-T MIMO Capacity at Low SNR Full CSI Log-normal Channel Capacity

MIMO Channel with Rayleigh Fading SISO Channel with Log-normal shadowing

SISO Channel with Log-normal shadowing

Log-normal Channel Model

$$y = hx + n$$

where

- $y \in \mathbb{C}$: the received signal,
- $x \in \mathbb{C}$: the transmitted signal,
- $n \in \mathbb{C}$: the noise,
- $h \in \mathbb{C}$: the channel gain.

$$f_h(t) = rac{\xi}{\sqrt{2\pi}\sigma t} \, \exp\left(-rac{\left(\xi\log(t)-\mu
ight)^2}{2\sigma^2}
ight)$$

with μ and σ being the mean and the variance of h and $\xi = \frac{10}{\log(10)}$.

Motivation Examples

Outline

1 Systems Models

- 2 Asymptotic analysisMotivation
 - Examples
- 3 Full CSI MIMO Capacity at Low SNR
- 4 Noisy CSI-T MIMO Capacity at Low SNR
- 5 Full CSI Log-normal Channel Capacity

Motivation Examples

Motivation

• What it is: A mathematical tool consisting in letting a certain parameter (here SNR) go to extreme values (0 or $+\infty$).

Motivation Examples

Motivation

- What it is: A mathematical tool consisting in letting a certain parameter (here SNR) go to extreme values (0 or $+\infty$).
- What it is used for: Description of limiting behaviors, in our case channel capacity in high/low SNR regimes.

Motivation Examples

Motivation

- What it is: A mathematical tool consisting in letting a certain parameter (here SNR) go to extreme values (0 or $+\infty$).
- What it is used for: Description of limiting behaviors, in our case channel capacity in high/low SNR regimes.
- How it is done: By letting SNR $\rightarrow 0/+\infty$ in exact capacity expression (excap) and deduce simple asymptotic capacity expression (ascap) such that

 $\mathsf{excap}(\mathsf{SNR}) \approx \mathsf{ascap}(\mathsf{SNR}) \Longleftrightarrow \lim_{\mathsf{SNR} \to 0/+\infty} \frac{\mathsf{excap}(\mathsf{SNR})}{\mathsf{ascap}(\mathsf{SNR})} = 1$

Motivation Examples

Example 1: MIMO Channel with no CSIT

General expression

$$C^1 = \mathbb{E}_H \left[\log \det \left(I_r + rac{\mathsf{SNR}}{t} H H^\dagger
ight)
ight]$$

Motivation Examples

Example 1: MIMO Channel with no CSIT

General expression

$$C^1 = \mathbb{E}_H \left[\log \det \left(I_r + rac{\mathsf{SNR}}{t} H H^\dagger
ight)
ight]$$

Low SNR asymptotic expression

$$C_0^1 = r \text{ SNR}$$

Motivation Examples

Example 1: MIMO Channel with no CSIT

General expression

$$C^1 = \mathbb{E}_H \left[\log \det \left(I_r + rac{\mathsf{SNR}}{t} H H^\dagger
ight)
ight]$$

Low SNR asymptotic expression

$$C_0^1 = r \text{ SNR}$$

High SNR asymptotic expression

$$C_{\infty}^1 = m \log(\text{SNR})$$

Motivation Examples

Example 1: MIMO Channel with no CSIT

MIMO channel capacity

Figure : 2-2 MIMO channel capacity with perfect CSI-R in nats per channel use (npcu) versus SNR in dB.

Figure : MIMO channels capacities with perfect CSI-R in nats per channel use (npcu) versus SNR in dB.

Motivatior Examples

Example 2: MIMO Channel with full CSI at high SNR

General expression:

$$C^2 = m\mathbb{E}_{\lambda}\left[\log\left(\mu\lambda\right)^+
ight]$$

where μ satisfies

$$\mathsf{SNR} = m\mathbb{E}_{\lambda}\left(\mu - \frac{1}{\lambda}
ight)^+$$

Motivatior Examples

Example 2: MIMO Channel with full CSI at high SNR

General expression:

$$C^2 = m \mathbb{E}_{\lambda} \left[\log \left(\mu \lambda \right)^+
ight]$$

where μ satisfies

$$\mathsf{SNR} = m\mathbb{E}_{\lambda}\left(\mu - rac{1}{\lambda}
ight)^+$$

High SNR asymptotic expression

$$C_{\infty}^2 = m \log(\text{SNR})$$

Motivatior Examples

Example 2: MIMO Channel with full CSI at high SNR

General expression:

$$C^2 = m \mathbb{E}_{\lambda} \left[\log \left(\mu \lambda \right)^+
ight]$$

where μ satisfies

$$\mathsf{SNR} = m\mathbb{E}_{\lambda}\left(\mu - rac{1}{\lambda}
ight)^+$$

High SNR asymptotic expression

$$C_{\infty}^2 = m \log(\text{SNR})$$

Figure : 3-3 MIMO channel capacity with full CSI in nats per channel use (npcu) versus SNR in dB.

General expression Low SNR Asymptotic expression On-Off scheme

Outline

Systems Models

Asymptotic analysis

3 Full CSI MIMO Capacity at Low SNR

- General expression
- Low SNR Asymptotic expression
- On-Off scheme

4 Noisy CSI-T MIMO Capacity at Low SNR

5 Full CSI Log-normal Channel Capacity

General expression Low SNR Asymptotic expression On-Off scheme

General Expression

MIMO channel capacity under Rayleigh fading with full CSI:

$$C^{2} = \max_{Q: \mathrm{Tr}[Q] \leq P_{\mathrm{avg}}} \mathbb{E}_{H} \left[\log \det \left(I_{r} + \frac{1}{N_{0}} H Q H^{\dagger} \right) \right]$$

which is equivalent to

$$\mathcal{C}^2 = m\mathbb{E}_{\lambda}\left[\log\left(\mu\lambda
ight)^+
ight]$$

where μ satisfies

$$\mathsf{SNR} = m\mathbb{E}_{\lambda}\left(\mu - rac{1}{\lambda}
ight)^+$$

General expression Low SNR Asymptotic expression On-Off scheme

Low SNR Asymptotic Expression

Full CSI MIMO Capacity at Low SNR

$$C_0^2 \approx \begin{cases} -\alpha \text{ SNR } W_0\left((\text{SNR})^{\frac{1}{\alpha}}\right) & \text{if } \alpha < 0, \\ -\text{SNR } \log(\text{SNR}) & \text{if } \alpha = 0, \\ -\alpha \text{ SNR } W_{-1}\left(-(\text{SNR})^{\frac{1}{\alpha}}\right) & \text{if } \alpha > 0, \\ \approx & \text{SNR } \log(1/\text{SNR}) \end{cases}$$

where $\alpha = n + m - 4$, $W_0(.)$ and $W_{-1}(.)$ are the main and the lower branches of the Lambert-W function, respectively.

General expression Low SNR Asymptotic expression On-Off scheme

Low SNR Asymptotic Expression

Full CSI MIMO Capacity at Low SNR

$$\begin{split} C_0^2 &\approx \begin{cases} -\alpha \; \text{SNR} \; W_0\left((\text{SNR})^{\frac{1}{\alpha}}\right) & \text{if } \alpha < 0, \\ -\text{SNR} \log(\text{SNR}) & \text{if } \alpha = 0, \\ -\alpha \; \text{SNR} \; W_{-1}\left(-(\text{SNR})^{\frac{1}{\alpha}}\right) & \text{if } \alpha > 0, \\ &\approx \; \text{SNR} \log(1/\text{SNR}) \end{cases} \end{split}$$

where $\alpha = n + m - 4$, $W_0(.)$ and $W_{-1}(.)$ are the main and the lower branches of the Lambert-W function, respectively.

No CSI-T Low SNR expression: $C_0^1 = r$ SNR

General expression Low SNR Asymptotic expression On-Off scheme

Illustrations

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Figure : 2 transmit and 2 receive antennas channel capacity at Low-SNR in nats per channel use (npcu) versus SNR in dB. Figure : 3 transmit and 3 receive antennas channel capacity with full CSI in nats per channel use (npcu) versus SNR in dB.

General expression Low SNR Asymptotic expression **On-Off scheme**

On-Off scheme in the full CSI case

Power Profile $P(\lambda_{max}) = \begin{cases} P_0 & \text{if } \lambda_{max} \geq \tau \\ 0 & \text{otherwise} \end{cases}$

where P_0 satisfies the average power constraint

$$P_0 = rac{\mathsf{SNR}}{1 - \mathcal{F}_{\lambda_{max}}(au)}$$

General expression Low SNR Asymptotic expression **On-Off scheme**

On-Off scheme in the full CSI case

where P_0 satisfies the average power constraint

$$P_0 = rac{\mathsf{SNR}}{1 - \mathcal{F}_{\lambda_{max}}(au)}$$

Figure : (3-2) MIMO channel capacity with full CSI and On-Off achievable rate in nats per channel use (npcu) versus SNR in dB.

Outline

- Systems Models
- 2 Asymptotic analysis
- In the second second
- 4 Noisy CSI-T MIMO Capacity at Low SNR
- 5 Full CSI Log-normal Channel Capacity

System Model

Channel gain matrix

$$H = \hat{H} + \tilde{H}$$

where \tilde{H} is the error matrix, and \hat{H} is the estimated channel matrix. So

•
$$ilde{H}_{i,j} \sim \mathcal{CN}(0,e)$$

•
$$\hat{H}_{i,j} \sim \mathcal{CN}(0, 1-e)$$

Asymptotic Expression

Noisy CSI-T MIMO Capacity at Low SNR

$$C_0^{\alpha} \approx \begin{cases} -\alpha(1-e) \text{ SNR } W_0\left(((1-e)\text{SNR})^{\frac{1}{\alpha}}\right) & \text{if } \alpha < 0, \\ -(1-e) \text{ SNR } \log((1-e)\text{SNR}) & \text{if } \alpha = 0, \\ -\alpha(1-e) \text{ SNR } W_{-1}\left(-((1-e)\text{SNR})^{\frac{1}{\alpha}}\right) & \text{if } \alpha > 0, \\ \approx -(1-\alpha) \text{ SNR } \log((1-\alpha)\text{SNR}) \end{cases}$$

where
$$\alpha = n + m - 4$$
,
e is the estimation error variance,
 $W_0(.)$ and $W_{-1}(.)$ are the main and lower branches
of the Lambert-W function respectively.

Illustrations

Figure : 2 transmit and 2 receive antennas channel capacity with noisy CSI-T at Low-SNR in nats per channel use (npcu) versus SNR in dB.

Outline

Systems Models

- 2 Asymptotic analysis
- 3 Full CSI MIMO Capacity at Low SNR
- 4 Noisy CSI-T MIMO Capacity at Low SNR

5 Full CSI Log-normal Channel Capacity

- General and Asymptotic Expressions
- On-Off scheme

General and Asymptotic Expressions On-Off scheme

Lognormal Channel Capacity with full CSI

General Expression

$$C = \mathop{\mathbb{E}}_{h^2} \left[\log \left(\frac{t}{\lambda} \right)^+ \right]$$

where λ is the water-filling level chosen to meet the power constraint _ _ _ _

$$P_{avg} = \mathop{\mathbb{E}}_{h^2} \left[\left(\frac{1}{\lambda} - \frac{1}{t} \right)^+ \right]$$

General and Asymptotic Expressions On-Off scheme

Lognormal Channel Capacity with full CSI

General Expression

$$C = \mathop{\mathbb{E}}_{h^2} \left[\log \left(\frac{t}{\lambda} \right)^+ \right]$$

where λ is the water-filling level chosen to meet the power constraint _ _ _ _

$$P_{avg} = \mathop{\mathbb{E}}_{h^2} \left[\left(\frac{1}{\lambda} - \frac{1}{t} \right)^+ \right]$$

Low SNR Asymptotic Expression

$$C_{ln} pprox e^{rac{\sigma}{\xi}\sqrt{-\log({\sf SNR}^2)}}$$
 SNR

General and Asymptotic Expressions On-Off scheme

Illustration

Figure : Log-normal channel capacity at Low-SNR for 0dB mean and 1 variance in nats per channel use (npcu) versus SNR in dB.

General and Asymptotic Expressions On-Off scheme

On-Off scheme in Log-normal channel

Power Profile

$$P(h) = \left\{ egin{array}{cc} P_0 & ext{if } h \geq \lambda \ 0 & ext{otherwise} \end{array}
ight.$$

where $P_{\rm 0}$ satisfies the average power constraint

$$P_0 = \frac{\mathsf{SNR}}{1 - F_h(\lambda)}$$

General and Asymptotic Expressions On-Off scheme

On-Off scheme in Log-normal channel

Power Profile $P(h) = \left\{ egin{array}{cc} P_0 & ext{if } h \geq \lambda \\ 0 & ext{otherwise} \end{array}
ight.$

where P_0 satisfies the average power constraint

$$P_0 = \frac{\mathsf{SNR}}{1 - F_h(\lambda)}$$

Figure : Lognormal channel capacity with full CSI and On-Off achievable rate for $\mu = 0$ dB, $\sigma^2 = 1$ in nats per channel use (npcu) versus SNR in dB.

Contributions

- Low SNR expression of the Capacity of Full CSI MIMO Rayleigh Channel
- Low SNR expression of the Capacity of Noisy CSI-T MIMO Rayleigh Channel
- Low SNR expression of the Capacity of Log-normal shadowed Channel
- Design of On-Off transmission schemes

Contributions

- Low SNR expression of the Capacity of Full CSI MIMO Rayleigh Channel
- Low SNR expression of the Capacity of Noisy CSI-T MIMO Rayleigh Channel
- Low SNR expression of the Capacity of Log-normal shadowed Channel
- Design of On-Off transmission schemes

Possible Extensions

- Different fading distributions
- Non ergodic capacity
- Other performance indicators (e.g. Outage Probability)

• Abdoulaye Tall, Zouheir Rezki and Mohamed-Slim Alouini, "MIMO Channel Capacity with Full CSI at Low SNR", *Accepted for publication in IEEE Wireless Communication Letters*, Jun. 2012. • Abdoulaye Tall, Zouheir Rezki and Mohamed-Slim Alouini, "MIMO Channel Capacity with Full CSI at Low SNR", *Accepted for publication in IEEE Wireless Communication Letters*, Jun. 2012.

• Abdoulaye Tall, Zouheir Rezki and Mohamed-Slim Alouini, "Log-normal channel capacity characterization at low SNR with full CSI", *under preparation*.

Thank you for your attention!

Your questions are welcome.

Tunisia Polytechnic School

Option: Signals and Systems (SISY)

Graduation Project Defense

Low SNR Characterization of the Capacity of Generalized fading Channels

Presented by: Abdoulaye TALL

Supervisors: Dr Zouheir REZKI, Dr Mohamed-Slim ALOUINI Vis-à-Vis: Dr. Ines BOUSNINA

June 27, 2012