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Abstract—In this paper, we characterize the ergodic capacity
of Multiple Input Multiple Output (MIMO) Rayleigh fading
channels with full channel state information (CSI) at both the
transmitter (CSI-T) and the receiver (CSI-R) at asymptotically
low signal-to-noise ratio (SNR). A simple analytical expression of
the capacity is derived for any number of transmit and receive
antennas. This characterization clearly shows the substantial gain
in terms of capacity over the no CSI-T case and gives a good
insight on the effect of the number of antennas used. In addition,
an On-Off transmission scheme is proposed and is shown to be
asymptotically capacity-achieving.

Index Terms—Channel capacity, MIMO, Low SNR, Full CSI,
On-Off scheme

I. INTRODUCTION

Available channel state information (CSI) at the transmitter
has a considerable impact on multiple-input multiple-output
(MIMO) channels capacity [1]. Such influence is negligible
at high signal-to-noise ratio (SNR) [2], but for low SNR the
ratio between capacity with and without CSI at the transmitter
goes to infinity when the SNR goes to zero [3]. Since many
systems now operate at low SNR either due to a large available
bandwidth, like in wideband communications [3], or because
of their own nature and their intrinsic purposes like in sensor
networks [4], [5]; it is interesting to investigate how this
capacity evolves with CSI at the transmitter at low SNR.
A lot of work has already been done on this topic. For
example in [6], spatially correlated Rayleigh and Rician fading
are considered, but with no CSI at the transmitter. In [7]
the full CSI case has been investigated under Rician fading.
Also in [8] a low SNR expression of the MIMO capacity is
derived assuming statistical CSI at the transmitter and Rician
or double-scattering fading. Recently the single-input single-
output (SISO) case has been investigated in [9], the capacity
has been shown to scale as SNR log(1/SNR) in the low SNR
regime for the Rayleigh fading case. Motivated by the last
result, we are interested in looking at the capacity behavior at
low SNR for the general MIMO case.
Our contributions are as follows:
• We derive a low-SNR closed-form expression of a

Rayleigh fading MIMO channel capacity with full CSI
at the transmitter in terms of the Lambert-W function.

• We then show that at asymptotically low SNR, this
capacity can be further simplified as SNR log(1/SNR);
suggesting that at asymptotically low-SNR, the effect of
multiple antennas vanishes.

• We construct an on-off transmission scheme that is
capacity-achieving at asymptotically low-SNR with only
one bit feedback.

II. PROBLEM FORMULATION

Let us consider a MIMO Gaussian channel that undergoes
a Rayleigh fading. We denote by t the number of transmit
antennas and r the number of receive antennas. The input-
output of this channel is described by:

y = Hx+ n; (1)

where H ∈ Cr×t is the channel matrix, x ∈ Ct its input,
y ∈ Cr its output and n the Gaussian noise. H is then
a random complex matrix of independent and identically
distributed entries, and each of its entries is assumed to
be zero-mean, gaussian with independent real and imaginary
parts, each part with variance 1/2. In (1), n is a zero-mean
complex Gaussian noise with independent real and imaginary
parts, and E(nn†) = Ir. Let us denote by m = min(r, t) and
n = max(r, t). The transmitted signal x is constrained in its
total power by Pavg :

E(x†x) ≤ Pavg. (2)

In regard of the above normalization of the noise and the
channel matrix, Pavg will be designated as SNR. In this
configuration, the capacity is given by [10] as

C = EH

[
m∑

i=1

((log(µλi))
+

)

]
, (3)

where λi, i = 1 · · ·m are the eigenvalues of the matrix HH†

and µ is chosen via the water-filling algorithm to meet the
power constraint with equality, i.e.

SNR = EH

[
m∑

i=1

((
µ− 1

λi

)+
)]

. (4)

While the capacity in (3) is easy to evaluate numerically, it
is a priori not clear how does it scale with SNR especially
at asymptotically low-SNR due to the Lagrange multiplier µ
involved in (3). Next, we characterize this capacity at low SNR
using an asymptotic analysis.
In the following, we consider aymptotically low SNR and say
that f ≈ g if and only if limSNR→0

f(SNR)
g(SNR) = 1.

III. FULL CSI MIMO CAPACITY AT LOW SNR

Our main result is stated in the following Theorem.

Theorem. The capacity of a MIMO channel undergoing
Rayleigh fading as described in (1) with perfect CSI-T and
CSI-R in the low SNR regime is given by
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C ≈





−α SNR W0

(
(SNR)

1
α

)
if α < 0,

−SNR log(SNR) if α = 0,

−α SNR W−1
(
−(SNR)

1
α

)
if α > 0,

(5)

≈ SNR log(1/SNR) (6)

where α = n + m − 4, W0(.) and W−1(.) are the main and
the lower branches of the Lambert-W function, respectively.

Proof: First let us find the water-filling level µ that
corresponds to optimal power allocation. From (4) we have

SNR = m Eλ

((
µ− 1

λ

)+
)
, (7)

The probability density function (PDF) of λ is given by [11,
Eq. (42)];

pλ(λ) =
1

m

m−1∑

i=0

i∑

j=0

2j∑

l=0

C(n,m, i, j, l)λn−m+le−λ (8)

where C(n,m, i, j, l) is given by

C(n,m, i, j, l) =
(−1)l(2j)!

2(2i−l)j!l!(n−m+ j)!(
2i− 2j

i− j

)(
2n− 2m+ 2j

2j − l

) (9)

From (7) and (8), we have

SNR =

m−1∑

i=0

i∑

j=0

2j∑

l=0

C(n,m, i, j, l)

∫ ∞
1
µ

(
µ− 1

λ

)
λn−m+le−λ dλ,

With the use of [12, eq. (8.350.2) p. 949] which defines the
upper incomplete Gamma function Γ(., .), we have
∫ ∞

1
µ

(
µ− 1

λ

)
λn−m+le−λ dλ = µΓ

(
n−m+ l + 1,

1

µ

)

− Γ

(
n−m+ l,

1

µ

)
. (10)

Γ(., .) can be rewritten using [12, eq. (8.352.2) p. 949] as
Γ(k, α) = (k − 1)!e−α

∑k−1
j=0

αj

j! . As SNR → 0, we can find
that the water level µ also goes to 0 using Lemma 1 in [13].
Thus we can say that

µp � µq ∀ p, q ∈ N such as p > q. (11)

Using (11) in (10), we obtain
∫ ∞

1
µ

(
µ− 1

λ

)
λn−m+le−λ dλ ≈ µ−(n−m+l−2)e−

1
µ

Finally, we get

SNR ≈
m−1∑

i=0

i∑

j=0

2j∑

l=0

C(n,m, i, j, l)µ−(n−m+l−2)e−
1
µ . (12)

Using the same considerations as in (11), we can restrict

this expression to the term with highest value of l which is
l = 2(m− 1). For this particular value

C(n,m, i, j, l) = C(n,m,m− 1,m− 1, 2(m− 1))

=
1

(m− 1)!(n− 1)!
.

As such we end up with

SNR ≈ 1

(m− 1)!(n− 1)!
µ−(n+m−4)e−

1
µ . (13)

This equation can be solved by transforming it into an
equation of the type y = xex which is solved in terms of the
Lambert-W function. More specifically we have three cases:

Case 1: n+m− 4 < 0: In this case the solution is given
by the main branch of Lambert W function W0(.) as

1

µ
≈ −(n+m−4)W0

(
− (SNR(m− 1)!(n− 1)!)

1
n+m−4

n+m− 4

)
. (14)

Case 2: n+m− 4 = 0: This is the simplest case where in
fact (m,n) ∈ {(2, 2), (1, 3)}. In this case µ is simply given
by

1

µ
≈ − log(SNR(n− 1)!). (15)

Case 3: n+m−4 > 0: In this case, the lower branch of the
lambert W function is used since the argument given to that
function would be negative, and our solution must rationally
be converging towards 0 when the power do so. Thus in this
case we get

1

µ
≈ (n+m−4)W−1

(
− (SNR(m− 1)!(n− 1)!)

1
n+m−4

n+m− 4

)
. (16)

However this solution is meaningless when the argument of
W−1(.) function is less than − 1

e . As such our average power
must be beneath a certain value for (16) to be valid, and that
value is given by

SNR ≤ 1

(m− 1)!(n− 1)!

(
n+m− 4

e

)(n+m−4)

. (17)

Using the fact that

lim
x→∞

W0(βx)

W0(x)
= 1 and lim

x→0−

W−1(βx)

W−1(x)
= 1 ∀β > 0, (18)

as shown in [13, Eq. (16),(17)], we can further simplify (14)
and (16). A more simplified solution of (13) can be obtained
by applying the log function on both sides of (13) and recalling
that when SNR → 0 then µ → 0. We can also neglect
log((m−1)!(n−1)!) besides log(SNR) at asymptotically low
SNR for fixed m and n. In this case, we get

µ ≈ − 1

log(SNR)
. (19)

The water level µ being characterized, let us compute the
capacity. From (3), we have

C = m E((log(µλ))
+

). (20)

Using again the PDF of the eigenvalues given in (8), we obtain

C =

m−1∑

i=0

i∑

j=0

2j∑

l=0

C(n,m, i, j, l)

∫ ∞
1
µ

(log(µλ))λn−m+le−λ dλ.
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Using [12, Eq. (8.350.2) p. 949], we can write∫ ∞
1
µ

(log(µλ))λn−m+le−λ dλ = log(µ)Γ

(
n−m+ l + 1,

1

µ

)
+

∫ ∞
1
µ

log(λ)λn−m+le−λ dλ.

(21)

Letting t = µλ in the second term of (21), we get∫ ∞
1
µ

(log(µλ))λn−m+le−λ dλ = log(µ)Γ

(
n−m+ l + 1,

1

µ

)

+ log

(
1

µ

)
Γ

(
n−m+ l + 1,

1

µ

)

+

(
1

µ

)n−m+l+1 ∫ ∞
1
µ

log(t)tn−m+le
− t
µ dt. (22)

From [14, Eq. (64)], we know that∫ ∞
1
µ

log(t)tn−m+le
− t
µ dt =

(n−m+ l)!(
1
µ

)n−m+l+1

n−m+l∑
k=0

Γ(k, 1
µ

)

k!
(23)

In addition to that, using similar techniques as in (11) for (22),
we can write

∫ ∞
1
µ

(log(µλ))λn−m+le−λ dλ ≈
(

1

µ

)n−m+l+1

e−
1
µ .

Thus, the capacity at low SNR can be written as

C ≈
m−1∑

i=0

i∑

j=0

2j∑

l=0

C(n,m, i, j, l)

(
1

µ

)n−m+l+1

e−
1
µ . (24)

In (24) we recognize the expression of the SNR given in
(12). Thus we can write

C ≈ SNR
µ

. (25)

Combining (14), (15), (16), and (18) along with (25) gives
(5), whereas (6) follows from (19) and (25).

IV. ON-OFF TRANSMISSION SCHEME

In this section, we propose a transmission scheme that is
asymptotically (at low-SNR) capacity-achieving. Intuitively
since the SNR is very low, one should remain silent and
send opportunistically when the channel is very good using
a Gaussian codebook and a fixed transmit power. Also, since
the available SNR is low, one can reasonably try to exploit
the strongest channel eigenmode and transmit along the largest
eigenvalue direction. Clearly, this can be done by appropriately
activating only one antenna at each end and turning off the
others. More specifically, the on-off power control scheme is

P (λmax) =

{
P0 if λmax ≥ τ
0 otherwise

where τ is a threshold and P0 satisfies the average power
constraint

P0 =
SNR

1− Fλmax(τ)

The cumulative distribution function of the largest eigenvalue
of a Wishart matrix is given in [15, eq. (6)] by

Fλmax(x) =
det(Ψ(x))∏m

k=1 Γ(n− k + 1)Γ(m− k + 1)

where Ψ(x) is a mxm matrix defined as follows:

Ψ(i,j)(x) = γ(n−m+ i+ j − 1, x); i, j = 1, ...,m

where γ(.) is the lower incomplete gamma function [12, Eq.
(8.350.1) p. 949]. Taking advantage of our framework, we
choose τ to be the inverse of the water-filling level µ which is
the solution of (13), its low-SNR expression is given by (14)
, (15) or (16) depending on the values of m and n. Therefore,
the achievable rate, say R, of this on-off scheme is given by

R = Eλmax (log(1 + P (λmax)λmax))

=

∫ ∞

τ

log(1 + P0λ)pλmax(λ)dλ (26)

≥ log(1 + P0τ)

∫ ∞

τ

pλmax(λ)dλ (27)

Now let us note that Fλmax(τ) ≤ Fλ(τ). Thus

P0τ =
SNRτ

1− Fλmax(τ)
≤ SNRτ

1− Fλ(τ)
.

From (13) and considering the value of τ we have chosen,
it can be easily verified that SNRτ ≈ K1τ

n+m−3e−τ . Also
using the PDF of λ in (8) we can show that 1 − Fλ(τ) ≈
K2τ

n+m−2e−τ for τ → ∞. K1 and K2 are positive real
constants. So, it becomes clear that

lim
τ→∞

P0τ = 0 (28)

Then combining (27) and (28), and recalling that log(1+x) ≈
x; the proposed on-off achievable rate can be lower-bounded
by

R ≥ P0τ(1− Fλmax(λ)) = SNR τ (29)

The right hand side (RHS) of (29) is nothing but the asymp-
totic capacity expression given by (25) which ensures that the
proposed on-off scheme is asymptotically capacity-achieving.
In fact this on-off scheme is still capacity achieving if we
choose any of the eigenvalues (different distribution than that
of the maximum eigenvalue) at each realisation of the channel
and the proof is similar. This means that we can use only
one antenna at both sides of the channel and still achieve
this capacity. So for this on-off scheme, we only need one
bit feedback from the receiver stating whether we transmit or
not.

V. NUMERICAL RESULTS

In Fig. 1, Fig. 2, and Fig. 3; the exact capacity is computed
using standard root-finding algorithms to evaluate the water-
filling level µ and then using numerical integration. The no
CSI-T capacity is obtained by Monte-Carlo simulations. The
tightness of the expressions given in (5) and (6) is clearly
visible in Fig. 1, Fig. 2, and Fig. 3. The growing gap between
the full CSI capacity and the no-CSI capacity when the SNR
converges towards zero stress on the fact that CSI at the
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Fig. 1. 2 transmit and 2 receive antennas channel capacity at Low-SNR in
nats per channel use (npcu) versus SNR in dB.
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Fig. 2. 2 transmit and 1 receive antennas channel capacity with full CSI at
Low-SNR in nats per channel use (npcu) versus SNR in dB.

transmitter affects considerably the capacity at low SNR. Fig.
1 depicts the particular case of n = m = 2 in which the two
expressions (5) and (6) become identical. In Fig. 2, the first
asymptotic expression uses the main branch of the Lambert
function since n+m < 4; we can also note that in this case
the second asymtotic expression approaches the exact capacity
from above. But in Fig. 3, the lower branch is used instead
because n + m > 4 and the second asymptotic expression
approaches the exact capacity from below. The achievable rate
of the proposed on-off scheme curve has been obtained by
evaluating (26), where the PDF of λmax has been borrowed
from [16, Eq. (23)]. In Fig. 1, Fig. 2 and Fig. 3, we can see
that the on-off rate overlaps always with the exact capacity,
suggesting that this scheme is very appealing from a practical
point of view, even for not so low values of the SNR.

VI. CONCLUSION

In this paper, we derived a simple analytical expression for
the capacity of MIMO channel undergoing Rayleigh fading
with full CSI-T in the low SNR regime. We also showed that at
aymptotically low SNR, there is no need for multiple antennas.
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Fig. 3. 3 transmit and 2 receive antennas channel capacity at Low-SNR in
nats per channel use (npcu) versus SNR in dB.

We even constructed a simple on-off scheme which only needs
1-bit feedback from the receiver, only one antenna on both
sides and which is asymptotically capacity-achieving.
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