

PhD Thesis Defense on

Optimization and Self-optimization for LTE Networks

Author: Abdoulaye TALL Supervisors: Zwi ALTMAN Eitan ALTMAN Richard COMBES

December 17th, 2015

Context

- More and more complex networks
- Highly competitive market with steadily decreasing prices/revenues

Example: Orange France

- Sites: 19000+ 2G, 19000+ 3G, 7000+ 4G
- Frequency bands: 700 MHz, 800 MHz, 900 MHz, 1.8 GHz, 2.1 GHz and 2.6 GHz
- Indoor femto-cells

Challenge:

Optimize resource utilization and Control the OPEX.

Enabler:

Automation with Self-Organizing Network (SON) for

self-configuration, self-optimization and self-healing.

Image: A math a math

Thesis objectives

Design self-optimizing algorithms for use cases of interest: hetnets and active antenna systems.

Introduction

SON design methodology

Overview

Introduction

2 Background

3 Heterogeneous Networks

- Load balancing
- Interference coordination
- Numerical results

Active Antenna Systems

- Vertical Sectorization
- Virtual Sectorization
- Multilevel Beamforming

5 SON Coordination

- Concept
- Problem formulation and Solution
- Use case

6 Conclusion & Perspectives

- Conclusion
- Perspectives

< □ > < ^[] >

Introduction

2 Background

- 3 Heterogeneous Networks
- 4 Active Antenna Systems
- 50N Coordination
- 6 Conclusion & Perspectives

A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Background

Flow level network model

- Base station modeled as M/G/1 PS queue
- User's data rate $R(r) = min(R_{max}, \eta \log_2(1 + SINR(r)))$
- Key performance indicators:
 - Load: $\rho = \frac{\text{traffic demand}}{\text{service rate}}$
 - Mean user throughput: $\mu = R(1 \rho)$
 - Others by simulation.

Image: A math a math

Introduction

2 Background

Heterogeneous Networks

- Load balancing
- Interference coordination
- Numerical results

4 Active Antenna Systems

- 50N Coordination
- Conclusion & Perspectives

Image: A mathematical states and a mathem

Introduction

- Nodes with different transmit powers
- Nodes with different propagation conditions
- Nodes with low processing capabilities
- Dense network with more interference problems

Overview

Introduction

2 Background

3 Heterogeneous Networks

- Load balancing
- Interference coordination
- Numerical results

4 Active Antenna Systems

- **5** SON Coordination
- 6 Conclusion & Perspectives

< □ > < ^[] >

Literature review

H. Kim et al., IEEE INFOCOM 2010:

$$s_u^* = \operatorname{argmax}_s R_{u,s} (1 - \rho_s)^{\alpha} \tag{1}$$

・ロト ・回ト ・ ヨト

with $R_{u,s}$ (data rate from BS s to user u), ρ (load) and $\alpha \in \mathbb{R}_+$.

$$\implies$$
 Minimizes $\sum_{s} \frac{(1-\rho_s)^{1-\alpha}}{\alpha-1}$.

R. Combes et al., IEEE INFOCOM 2012:

$$P_s(k+1) = P_s(k)(1 + \epsilon_k(\rho_1(k) - \rho_s(k)))$$

with P (pilot power).

 \implies Minimizes max_s ρ_s

End-to-end load model

Classical BS load definition:

$$\rho = \min\left(1, \int_{A} \frac{\lambda(r)\mathbb{E}(\sigma)}{R(r)} dr\right),\tag{3}$$

End-to-end load definition

$$\rho_g = \min\left(1, \int_A \frac{\lambda(r)\mathbb{E}(\sigma)}{\min(C_{BH}, R(r))} dr\right).$$

where

- C_{BH}: backhaul capacity,
- $\lambda(r)$: arrival rate at location r,
- $\mathbb{E}(\sigma)$: mean file size,
- R(r): peak rate at location r.

<ロ> (日) (日) (日) (日)

(4)

Overview

Introduction

2 Background

3 Heterogeneous Networks

- Load balancing
- Interference coordination
- Numerical results

4 Active Antenna Systems

- **5** SON Coordination
- 6 Conclusion & Perspectives

< □ > < ^[] >

Heterogeneous Networks Interference coordination

Almost Blank Subframe (ABS) mechanism

- Time-domain interference mitigation in heterogeneous networks.
- Used in conjunction with Cell Range Extension (CRE).

Illustration of Almost Blank Sub-Frames in a HetNet

・ロト ・回ト ・ヨト ・

ABS-based interference coordination (elCIC)

Opimization Problem: trade-off between small cells' users SINR and macro cells' capacity.

 θ : ABS ratio applied by the considered macro cells.

 $R_u = (1 - \theta) \bar{R}_{u,m}$: Average data rate of macro user.

 $R_u = (1 - \theta)\bar{R}_{u,p}^{\text{no ABS}} + \theta\bar{R}_{u,p}^{\text{ABS}}$: Average data rate of small cell user.

Performance criteria: α -fair utility of users' throughput

$$U_{\alpha}(\theta) = \begin{cases} \sum_{\text{all users}} \log R_u & \text{if } \alpha = 1\\ \sum_{\text{all users}} \frac{R_u^{1-\alpha}}{1-\alpha} & \text{otherwise} \end{cases}$$
(5)

イロト イヨト イヨト イヨ

Lower-bound PF utility for low complexity algorithm

Exact Proportional Fair ($\alpha = 1$) utility:

$$U_{\mathsf{PF}_\mathsf{exact}}(\theta) = \sum_{m=1}^{M} \sum_{u \in m} \log((1-\theta)\bar{R}_{u,m}) + \sum_{u \in p} \log((1-\theta)\bar{R}_{u,p}^{\mathsf{no}\;\mathsf{ABS}} + \theta\bar{R}_{u,p}^{\mathsf{ABS}}) \quad (6)$$

Lower bound utility:

$$U_{\mathsf{PF}_approx}(\theta) = \sum_{m=1}^{M} \sum_{u \in m} \log((1-\theta)\bar{R}_{u,m}) + \sum_{u \in p} \frac{1}{2} \log(2(1-\theta)\bar{R}_{u,p}^{\text{no ABS}}) + \sum_{u \in p} \frac{1}{2} \log(2\theta\bar{R}_{u,p}^{\text{ABS}})$$
(7)

Optimal ABS ratio in closed-form

$$\theta = \frac{N_p}{2(N_p + \sum_{m=1}^M N_m)}$$

イロト イロト イヨト イ

(8)

Frequency splitting (orthogonal deployment)

- Orthogonal frequency used between macro cells and small cells
- Completely eliminates interference between macro cells and small cells at the price of reduced frequency reuse.

Overview

Introduction

2 Background

3 Heterogeneous Networks

- Load balancing
- Interference coordination
- Numerical results
- 4 Active Antenna Systems
- **5** SON Coordination
- 6 Conclusion & Perspectives

Abdoulave Tall

Image: A matrix and a matrix

Numerical results - Scenario

Network parameters		
Number of macro BSs	3	
Number of small BSs	12	
Number of interfering macros	6×3 sectors	
Macro Cell layout	hexagonal trisector	
Small Cell layout	omni	
Intersite distance	500 m	
Bandwidth	10MHz	
Scheduling	Round-Robin	
Channel characteristics		
Thermal noise	-174 dBm/Hz	
Macro Path loss (d in km)	128.1 + 37.6 log ₁₀ (d) dB	
Small cell Path loss (d in km)	$140.7 + 36.7 \log_{10}(d) \text{ dB}$	
Algorithms Parameters		
SON update frequency	every event	
Step size of ABSrO	10 ⁻⁴	
Step size of FSO	5.10 ⁻⁵	

Network layout scenario

A B > 4
 B > 4
 B

-

Numerical results - Scenario cont'd.

Traffic spatial distribution	uniform
λ	14 users/s/km 2
λ_h	6 users/s/km ²
Service type	FTP
Average file size	6 Mbits

NoSON: baseline. LBonly: load balancing only. AFUAonly: alpha-fair user association (afua) only. **LB-CCD-approx**: load balancing with approximate ABS-based elCIC. AFUA-CCD-approx: afua with approximate ABS-based elCIC. **LB-OD-approx**: load balancing with approximate frequency-based elCIC. AFUA-OD-approx: afua with approximate frequency-based elCIC.

A B A B
 A B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Numerical results - Performance

Exact vs Approximate algorithms

< □ > < ^[] >

Overview

Introduction

2 Background

3 Heterogeneous Networks

Active Antenna Systems

- Vertical Sectorization
- Virtual Sectorization
- Multilevel Beamforming

5 SON Coordination

6 Conclusion & Perspectives

< □ > < ^[] >

Introduction

Base Station architecture evolution

イロト イヨト イヨト イヨト

Overview

Introduction

2 Background

Heterogeneous Networks

Active Antenna Systems Vertical Sectorization

- Virtual Sectorization
- Multilevel Beamforming

5 SON Coordination

6 Conclusion & Perspectives

< □ > < ^[] >

Vertical Sectorization (VeSn) description

- Vertical separation of the two beams in the same sector
- Sector divided in two cells: inner and outer with resp. vertical tilts θ_{inner} and θ_{outer} with $\theta_{inner} > \theta_{outer}$

Transmit powers: P_i and P_o for inner and outer cells resp. with P_i + P_o = P_{total}.

 Possible implementations: bandwidth sharing or full reuse.

Image: A math a math

VeSn with frequency reuse one

Description

- Inner and outer sectors reuse the whole available bandwidth.
- Power budget split equally between inner and outer sectors.

Advantages

- Increased capacity.
- Increased antenna gain for inner cell users.

Drawbacks

- Reduced transmit power.
- More interference.

Requirement: SON controller for VeSn feature activation.

< □ > < ^[] >

VeSn feature activation problem

Activation rule

Action =
$$\begin{cases} VeSn ON & \text{if } \mu^{ON}(\rho_i, \rho_o) > \mu^{OFF}(\rho_i, \rho_o) \\ VeSn OFF & \text{otherwise} \end{cases}$$
(9)

Decision Boundary

$$\mu^{\text{ON}}(\rho_i, \rho_o) = \mu^{\text{OFF}}(\rho_i, \rho_o)$$
(10)

・ロト ・回ト ・ヨト

$$(VSOFF): a_1\rho_i^2 + b_1\rho_i\rho_o + c_1\rho_o^2 + d_1\rho_i + e_1\rho_o = 0$$
(11)

$$(VSON): a_2\rho_i^2 + b_2\rho_i\rho_o + c_2\rho_o^2 + d_2\rho_i + e_2\rho_o = 0$$
(12)

with $a_1, a_2, b_1, b_2, c_1, c_2, d_1, d_2, e_1, e_2$: parameters depending on traffic and data rate distributions in the sector.

Abdoulaye Tall

VeSn activation controller calibration

Data from realistic network simulator

ρ_{inner off}

 $\rho_{\text{inner,on}}$ Data used to estimate parameters of the decision boundaries: classification problem.

Image: A mathematic states and a mathematic states

0.8

VeSn activation controller performance

イロト イ団ト イヨト イヨト

VeSn with bandwidth sharing

Description

- Total frequency bandwidth split between inner and outer sectors.
- Transmit power per Hz does not change.

Advantages

- No Inter-cell interference between inner and outer cells.
- Increased transmit power for each user compared to reuse one.
- Increased antenna gain for inner cell users.

Drawbacks

• Reduced capacity because there is no reuse.

Problem: Which sharing proportions for the frequency bandwidth?

Image: A mathematic states and a mathematic states

Optimal bandwidth sharing

 \bullet Parameter: δ - proportion of bandwidth allocated to inner cell.

Criteria: Alpha-fair utility of all users throughputs

$$U_{\alpha}(\delta) = \begin{cases} \sum_{u \in \mathcal{U}_{i}} \log\left(\delta\bar{R}_{u}\right) + \sum_{u \in \mathcal{U}_{o}} \log\left((1-\delta)\bar{R}_{u}\right) & \alpha = 1\\ \sum_{u \in \mathcal{U}_{i}} \frac{\left(\delta\bar{R}_{u}\right)^{1-\alpha}}{1-\alpha} + \sum_{u \in \mathcal{U}_{o}} \frac{\left((1-\delta)\bar{R}_{u}\right)^{1-\alpha}}{1-\alpha} & \alpha \neq 1 \end{cases}$$

• If $\alpha = 1$, optimal parameter in closed form:

$$\delta = \frac{N_i}{N_i + N_o} \tag{13}$$

・ロト ・回ト ・ ヨト

with
$$N_i = |\mathcal{U}_i|$$
 and $N_o = |\mathcal{U}_o|$.

• For general α :

$$\delta[k+1] = \delta[k] + \epsilon \frac{\partial \hat{U}_{\alpha}(\delta[k])}{\partial \delta}$$

VeSn with bandwidth sharing performance

Overview

Introduction

2 Background

Heterogeneous Networks

Active Antenna Systems Vertical Sectorization

Virtual Sectorization

Multilevel Beamforming

5 SON Coordination

6 Conclusion & Perspectives

< □ > < ^[] >

Virtual Sectorization (ViSn) description

- Evolution of vertical sectorization.
- Spatial separation of beam (both vertically and horizontally) using antenna arrays.
- Conservation of total power budget leading to resource allocation problems.
- Can be implemented with reuse one or frequency sharing (as in VeSn).

ViSn performance results

・ロト ・回ト ・ヨト ・

Overview

Introduction

2 Background

Heterogeneous Networks

Active Antenna Systems Vertical Sectorization Virtual Sectorization

Multilevel Beamforming

5 SON Coordination

6 Conclusion & Perspectives

< □ > < ^[] >

Introduction to multilevel beamforming

- Challenging topic in Massive MIMO community
- State of the art: channel matrix estimation and inversion
- Goal: low complexity processing for beamforming in TDD & FDD and low feedback in case of FDD.
- $\bullet\,$ Our approach: Extend codebook idea to integrate coverage aspect \Longrightarrow Beam planning.

Multilevel beamforming idea

Example of beam hierarchy

- Design the codebook hierarchically.
- Find the best beam available by navigating iteratively through the codebook.
- Tree search (logarithmic complexity)

Image: A matrix and a matrix

Beam planning for each type of environment

• Problem: automatic generation of beam codebook given basic cell information (size, antenna height, etc.). (future work)

A D F A A F F

Multilevel beamforming performance

Data rate function: $R = \min(R_{max}, \eta \log_2(1 + SINR))$

< 🗆 🕨 \land 🗇 🕨 .

Introduction

2 Background

3 Heterogeneous Networks

Active Antenna Systems

5 SON Coordination

- Concept
- Problem formulation and Solution
- Use case

6 Conclusion & Perspectives

orange

SON model as control loops

• Generic formulation of stochastic approximation algorithms

$$\theta_{n+1} = \theta_n + \epsilon(F(\theta_n) + M_n) \tag{14}$$

where

- θ : parameters,
- $F(\cdot)$: search directions,
- *M_n*: noise.
- Mean behavior described by the limiting Ordinary Differential Equation (ODE):

$$\dot{\theta} = F(\theta)$$

Stability and coordination

• Jacobian of $F(\theta)$ defined as $G_{\theta} = JF(\theta)$ where

$$G_{\theta}(i,j) = \frac{\partial F_i(\theta)}{\partial \theta_j}$$
(16)

イロト イヨト イヨト イヨ

December 17th, 2015

• Rosen's sufficient condition for stability:

Theorem

If the matrix $G_{\theta} + G_{\theta}^{T}$ is negative definite for every θ in $\prod_{j=1}^{N} S_{j}$, then $\dot{\theta} = F(\theta)$ has a unique equilibrium point and it is asymptotically stable in $\prod_{j=1}^{N} S_{j}$.

- Local stability given by linearization: $F(\theta) = A\theta$ then $A^T + A$ negative definite is a sufficient condition.
- Coordination idea: Apply a coordination matrix C (obtaining $\dot{\theta} = CF(\theta)$) such that $(CA)^T + CA$ is negative definite.

Coordination matrix computation

$$\begin{array}{l} \text{minimize } \|C + A^{-1}\|_{F} \\ \text{s.t. } (CA)^{T} + CA \prec 0; C \in \mathcal{C} \end{array}$$

$$(17)$$

where

- $\|.\|_F$ is the Frobenius norm.
- \mathcal{C} : the set of coordination matrices satisfying the system constraints.

Use case description

SON function	Parameters	KPIs
Load balancing	Transmit pilot power P _{pilot}	Load of the cell $ ho$
Outage Probability minimization	Transmit data power <i>P_{TCH}</i>	Coverage probability of the cell <i>K</i>
Blocking Rate minimization	Admission threshold AT	Blocking rate of the cell <i>b</i>

Performance results

・ロト ・回ト ・ヨト

Introduction

2 Background

- 3 Heterogeneous Networks
- 4 Active Antenna Systems

5 SON Coordination

- 6 Conclusion & Perspectives
 - Conclusion
 - Perspectives

A ID > A ID > A

Conclusion

- SON algorithms for small cells
 - Load balancing (with constrained backhaul)
 - Alpha-fair Interference coordination
- SON algorithms for active antenna systems
 - VeSn feature activation
 - Alpha-fair bandwidth sharing for VeSn and ViSn
 - Beam selection algorithm for multilevel beamforming
- Which is the best option?
 - With low cost backhaul or for non-line-of-sight coverage areas: Small Cells
 - Others: Active Antenna Systems (multilevel beamforming)
- Systematic SON coordination framework
 - Tested for load balancing with interference coordination in small cells scenario.

Image: A math a math

Perspectives

- Extend algorithms to other use cases: D2D, energy saving, etc.
- Backhaul-aware SON functions
- Multi-armed bandits for AAS features activation
- Beam planning automation and application to more use cases
- Which α in α -fair utilities?
- Coordination of highly non-linear systems of SON functions

Image: A mathematic states and a mathematic states

Thank you! Questions are welcome.

< □ > < □ > < □ > < □ > < □ > < □ > = Ξ